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Abstract. On the basis of the Feinberg-Horodecki quantal equation the space-like coherent states of a
time-dependent Morse oscillator, minimizing the time-energy uncertainty relation are constructed. They
reduce to the macroscopic states of the Gompertzian growth, in the limit of the anharmonicity constant
xe → 1. The obtained results are useful for interpreting the formation of the specific growth patterns
during crystallization process and biological growth.
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1 Introduction

In the past two and a half decades, much effort has been
undertaken to construct coherent states for general anhar-
monic potentials, particularly the Morse potential [1–9].
Such coherent states are usually constructed using a trans-
formation of the basic Hamiltonian to the form resem-
bling that for an harmonic oscillator [2], or by an algebraic
method [8] employing the supersymmetric quantum me-
chanics [7,9]. A point of departure for the above tech-
niques is the time-like Schrödinger equation including
space-dependent potentials. In this work we extend the
research area onto coherent states of the time-dependent
Morse oscillator, constructed on the basis of the space-like
counterpart of the Schrödinger equation [10].

The time-like coherent states of the space-dependent
oscillators are defined as: (i) eigenstates of the annihi-
lation operator, (ii) states that minimize the position-
momentum uncertainty relation and (iii) states that arise
from the operation of a unitary displacement operator to
the ground state of the oscillator [11]. The space-like co-
herent states differ from the time-like ones as they min-
imize the time-energy uncertainty relation. Such states
have not been considered yet, as they are difficult to
interpret in terms of temporal bound states and vibra-
tional motion. However, in the case of anharmonic os-
cillators, we have no bound states in the dissociation
limit and the direction of temporal motion is consis-
tent with the arrow of time (is not of the oscillatory
type). In view of this, the main objective of the present
work is to construct the space-like coherent states for the
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time-dependent Morse oscillator employing the Feinberg-
Horodecki equation being the space-like counterpart of
the time-like Schrödinger equation. It will be proved that
in the dissociation limit the space-like Morse coherent
states reduce to the well-known macroscopic states of
the Gompertzian growth whose temporal evolution is de-
scribed by the Gompertz [12] or Zwietering et al. [13] func-
tions. The results obtained are useful in explanation of the
origin of the Gompertzian growth and formation of the
specific growth patterns in biological and inorganic sys-
tems, particularly the growth of organisms, tumors, bac-
terial colonies and crystals.

2 Time- and space-like fields

The time- and space-like coherent states and equations
governing their propagation are symmetric with respect to
time and space coordinates, hence a consistent introduc-
tion of the latter is possible within the generalized quan-
tum theory including the space-like quantum states. A
relativistic version of such a theory has been introduced
by Feinberg [14], whereas its nonrelativistic approxima-
tion has been obtained by Horodecki [10], who derived
the space-like counterpart of the Schrödinger equation

i�
∂

∂x
Ψ = − �

2

2m0c

∂2

∂x2
0

Ψ +
V

c
Ψ (1)

called the Feinberg-Horodecki equation. Here, V denotes
the vector potential, m0 is the mass of the particle, x0 = ct
whereas c is the light velocity.



412 The European Physical Journal D

In the case of stationary states with the momentum
P = const, the space-independent version of the Feinberg-
Horodecki equation (1) is derivable by substitution [10] of

Ψ = φ(t)e−iPx/� (2)

into (1) yielding
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φ(t) = Pφ(t). (3)

This is identical to an energy eigenvalue equation in a
scalar potential V , with x replaced by t.

The Feinberg-Horodecki equation and space-like sys-
tems deserve attention as they play an important role in
the extended special relativity and extended quantum me-
chanics [15–17]. In particular, they are useful in explana-
tion of the conversion of light in ponderable matter [18],
the nature of electric charge and the force binding charge
and mass in a stable particle [19] and other phenomena
difficult to explain in the framework of orthodoxal time-
like physics [15,16].

3 The space-like coherent states of Morse
oscillator

The coherent states of a space-like anharmonic Morse os-
cillator can be constructed for the temporal counterpart of
the spatial Morse potential employing the algebraic pro-
cedure proposed by Cooper [8]. The point of departure is
the Feinberg-Horodecki quantal equation
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including the time-dependent Morse vector potential
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(
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)2 (5)

in which D0 and a = cκ denote the dissociation energy
and the range parameter, respectively.

Applying the Morse procedure [20] to (4), one gets the
momentum eigenvalues of the Feinberg-Horodecki-Morse
equation

P = �K[(v + 1/2)− (v + 1/2)2xe] v = 0, 1, 2... (6)

in which
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are the wavevector and the anharmonicity constant, re-
spectively, whereas ω is the vibrational frequency. Taking
advantage of the dimensionless coordinate

τ =
√

m0ω

�
x0 (8)

we arrive at the quantal equation

− 1
2

d2φv

dτ2
+

1
4xe

(
1 − e−

√
2xeτ

)2

φv =

[(v + 1/2)− (v + 1/2)2xe]φv, (9)

which can be expressed in the factorized form [8]
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are the space-like annihilation and creation operators, re-
spectively.

The space-like coherent states of the Morse oscillator
are eigenstates of the annihilation operator

B̂|β〉 = β|β〉 (13)
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√
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Such states minimize the time-energy uncertainty relation

(∆τ)2(∆E)2 ≥ 1
4
〈β|g(τ)|β〉2 ,
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yielding

(∆τ)2(∆E)2 =
1
4
〈β|g(τ)|β〉2 (16)

in which

(∆τ)2 = 〈β|τ2|β〉 − 〈β|τ |β〉2 ,
(∆E)2 = 〈β|Ê2|β〉 − 〈β|Ê|β〉2, (17)
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(18)
whereas |β〉 is given by (14). In the above formulae, τ
denotes, to within a constant, the temporal dimensionless
Morse variable.

4 The dissociation limit xe → 1

In the theory of time-like coherent states of the Morse os-
cillator the anharmonicity parameter xe plays an impor-
tant role as for xe → 0 the harmonic limit is regained [8].
On the other hand, for xe → 1 one can get from (9) the
dissociation limit equation
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for the space-like Morse oscillator with the anharmonicity
constant xe = 1. The eigenvalues of the above equation
are related to the quantized momentum

Pv = �K
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1
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)
, (20)

satisfying the relationship

∆Pv0 = Pv − P0 = −�Kv2. (21)

Since ∆Pv0 cannot be negative, equation (19) specified in
the form
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has only one ground-state solution for v = 0
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associated with the nonvanishing momentum P = �K/4.
Returning to original time-coordinate and taking advan-
tage of the relation

xe =
�ω

4D0
= 1 (24)

equation (22) can be transformed to the form
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in which
P0 = �K/4 = D0/c. (27)

A look into (25) reveals that this equation has only one
eigenvalue equal to the dissociation energy of the Morse
oscillator. In the dissociation state the motion along the
time trajectory is not of oscillatory type — its direction
is consistent with the arrow of time. Such a situation is
familiar for the systems whose temporal evolution is de-
scribed by the sigmoidal Gompertz function [21]. In the
next section two examples of systems of this type will be
presented.

5 Gompertzian systems

The sigmoidal (S-shaped) functions are widely ap-
plied to describe growth of a system, which is re-
tarded and saturated as time continues. They have been
widely used to describe the growth of biological sys-
tems, for example the growth of organisms, organs,
tisses, tumors, bacterial colonies. Among the numer-
ous sigmoidal functions (Avrami, Bertalanffy-Richards,
Verhultst, Gyllenberg-Webb, logistic, etc.) describing the
growth of biological systems the most popular is the
Gompertz function [12]

G(t) = G0 exp
[

b

a

(
1 − e−at

)
]

. (28)

In the above formulae a is the retardation constant, b de-
notes the initial growth or the regression rate constant: the
sign of b indicates if the system grows (+) or regresses (−).
The constant G0 = G(t = 0) stands for the initial char-
acteristics of the system, for instance, the initial mass,
volume, diameter or number of proliferating cells.

It has been demonstrated [21] that function (28) is a
solution of the temporal second-order differential equation
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which can be given in a dimensionless form
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The sigmoidal functions (Avrami, Fouber et al., etc.)
have also been applied to describe the crystallization pro-
cess. It consists of two stages: (i) nucleation in which
molecules come into contact and interact to form ordered
structures, and (ii) crystal growth which is the enlarge-
ment of the interacting nuclei. Because there are several
analogies between crystallization and bacterial growth [23]
(creation of bacteria resembles nucleation and crystal’s
growth, whereas bacterial consumption of nutrients re-
sembles a decrease in supersaturation) the reparametrized
Gompertz function

f(t) = f0 exp
[−e−at+d

]
, a =

µe

f0
, d =

µeλ

f0
+ 1,

(33)
has been proposed by Zwietering et al. [13] to describe
the crystallization process. In the above equation f0 is
the maximal value reached, µ is the maximum specific
growth rate defined as the tangent in the inflection point,
λ denotes the lag time defined as the t-axis intercept of
that tangent whereas e = 2.718281...

The function (33) given in the dimensionless form

f(τ) = f0 exp
[
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2
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]
, τ = (

√
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te =
1
a

[ln (2) + d] , (34)

is also a solution of the temporal dimensionless second-
order differential equation (30).

A comparison of (30) with (22) reveals that the for-
mer has identical form as equation (22) for a space-like
quantal Morse oscillator with the anharmonicity constant
equal to one, whereas the ground state dissociation so-
lution (23) is identical to within the multiplicative con-
stants G∞ = G0e

b/a and f0, with the Gompertz (31) and
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Zwietering et al. (34) functions. Those results indicate
that:

(i) the Gompertzian growth is governed by the equation
identical to that of the space-like Feinberg-Horodecki
for a time-dependent Morse oscillator with the an-
harmonicity constant xe = 1,

(ii) the transport of mass in the Gompertzian systems is
driven by a time-dependent Morse potential [21],

(iii) the Gompertzian growth takes place in the direction
consistent with the arrow of time and resembles dis-
sociation of the anharmonic oscillator,

(iv) the limiting value of the anharmonicity constant
xe → 1 can be used to obtain the micro-macro cor-
respondence relating the quantal space-like coherent
states of Morse oscillator with the macroscopic states
of the Gompertzian growth.

6 Coherent states of the Gompertzian growth

Substituting xe = 1 to (10–12) one gets the space-like an-
nihilation and creation equations which correspond to the
equations governing the macroscopic Gompertzian growth
and regression [21]
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The coherent states of the Gompertzian growth are solu-
tions of the annihilation operator [21]

B̂|β〉 = β|β〉, |β〉 = e
√
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]
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whereas the coherent states of the Gompertzian regression
are eigenstates of the creation operator B̂†. The states |β〉
minimize the time-energy uncertainty relation [21]
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represents the temporal Morse coordinate.
Introducing xe = 1 and β = 0 to (13) and (14) they

yield the ground state annihilation equation including the
dimensionless Gompertz function of growth
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Returning to the original time-coordinate (32), equa-
tions (36) can be given in the form of the temporal first-
order differential equations (b > 0)
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which represent the growth and regression of the macro-
scopic Gompertzian systems [22]. They are widely applied
in medical and biological sciences, for example to describe
a tumor response to chemotherapy [22].

In a similar manner from equations (36) and variable
(34) one gets equations describing the crystal growth and
regression (a > 0)

df(t)
dt

− ae−atf(t) = 0,

f(t) = f0 exp
[−e−at+d

]
, (43)

df †(t)
dt

+ ae−atf †(t) = 0,

f †(t) = f †
0 exp

[
+e−at+d

]
. (44)

The results obtained reveal that the macroscopic equa-
tions governing the Gompertzian growth and regression
can be derived from the annihilation and creation equa-
tions for the space-like Morse oscillator. In particular the
Gompertz (31) and Zwietering et al. (34) functions are
identical, to within multiplicative constants, to the func-
tion (23), representing the ground state solution of the
annihilation operator (36) for a space-like Morse oscilla-
tor with the anharmonicity constant xe = 1.

7 Space-evolution of the Gompertzian
coherent states

The space-like Gompertz coherent states (37) satisfy the
following relations:

|β(x)〉 = |β〉eiPx/�

β(x) =
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2

[T (x) − iE(x)] eiPx/�, (45)

T (x) = 〈β(x)|T̂ |β(x)〉 E(x) = 〈β(x)|Ê|β(x)〉, (46)

T (x) =
√

2Re[β(x)] = T (0)eiPx/�,

E(x) =
√

2Im[β(x)] = −E(0)eiPx/�. (47)

The states |β(x)〉 assumed to be coherent at the point
x = 0 remain coherent in all points of space. Such states
evolve along localized (classical) time-trajectory being co-
herent in all points of space. This conclusion becomes clear
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if we take into account the results obtained in the previ-
ous section. For the time-like coherent states of the space-
dependent Morse oscillator we have ∆Q = ∆P = const
[8] in which Q is the spatial variable and P associated mo-
mentum. Such states evolve coherently in time being lo-
calized on the classical space-trajectory [8]. In the case of
the Gompertz coherent states we have ∆T = ∆E = const.
Such states assumed to be coherent at an arbitrary point
remain coherent at all points of space. It becomes apparent
that the spatial coherence is an immanent feature of the
Gompertzian growth. It means that all spatially separated
elements of the Gompertzian systems have to be interre-
lated via long-range interactions permitting the spatially
coherent evolution of the system as a whole and evolu-
tion of its interconnected subelements [21]. This conclu-
sion is consistent with the Mombach et al. [27] approach
in which the Gompertzian model is derivable in the frame-
work of the mean-field theory of cellular growth assuming
the presence of long-range (slowly decaying) interactions.
In biological systems long-range interactions are mediated
through diffusive substances (growth factors), which inter-
act with specific receptors on the surface of the cells.

8 Conclusions

The constructed space-like coherent states of the time-
dependent Morse oscillator minimize the time-energy un-
certainty relation and evolve coherently in space being lo-
calized along the classical time-trajectory. Such states are
complementary to the ordinary time-like coherent states
of a space-dependent Morse oscillator, which minimize the
position-momentum uncertainty relation and evolve co-
herently in time being localized on the classical space tra-
jectory. The anharmonicity parameter xe can be used to
construct the coherent states of the Gompertzian systems,
whose growth is described by the Gompertz or Zwietering
et al. functions. The growth of the Gompertzian systems
is coherent in space: being coherent at an arbitrary point
of space, it remains coherent at all points of space. Such a
space-like coherence is independent of spatial separation
of the subelements of the system, hence the former have to
be interrelated via long-range interactions. The space-like
character of this connectedness enables the system to form
coherent complex patterns in response to external and in-
ternal conditions. This response requires self-organization
of the system and effective cooperation of all its intercon-
nected subelements.

In 2003 Molski and Konarski [21] showed that the
growth of biological systems (organism, organ, tissue, tu-
mor, bacterial colony), characterized by the Gompertz
function, is a spatially coherent phenomenon. They de-
rived the temporal second-order differential equation gov-
erning the Gompertzian growth, which expressed in di-
mensionless coordinate had the form identical to that of
the quantal Schrödinger equation for the Morse oscillator
with anharmonicity constant equal to one. In this work it
has been proved that the origin of the Gompertz function
is not the time-like Schrödinger equation but the space-
like Feinberg-Horodecki one. Only then one may explain

why Gompertzian states minimize the time-energy uncer-
tainty relation and not position-momentum one, as it is
for time-like solutions of the Schrödinger equation. Hav-
ing the Feinberg-Horodecki equation introduced, one may
also derive equations governing the spatial propagation of
the Gompertzian states; in the previous approach it was
impossible.

The space-like quantal Feinberg-Horodecki equation
for the time-dependent Morse oscillator with the anhar-
monicity constant equal to one, has identical form as the
macroscopic temporal second-order differential equation
describing Gompertzian growth. This result is surpris-
ing as both equation (29) and its solutions in the form
of the Gompertz function (28) are macroscopic formulae
and not microscopic ones. We conclude that the Gompertz
and Zwietering functions describe the growth of the spa-
tially coherent macroscopic systems in which a large num-
ber of subelements collectively cooperate in the ground
v = 0, β = 0 coherent mode of growth. This effect re-
sembles the low-temperature Bose-Einstein condensation
appearing in the superconductivity and superfluidity phe-
nomena in which a large number of microparticles collec-
tively cooperate sharing the same quantum state [24–26].
In the case of biological Gompertzian systems, the growing
cells resemble coupled anharmonic Morse oscillators shar-
ing the same quantum state (mode of growth) in which
cells collectively cooperate. It is concluded that the co-
herent formation of the specific growth patterns in the
Gompertzian systems is a result of long-range coopera-
tion between the micro-level (the individual cell) and the
macro-level (the system of cells as a whole). The proposed
interpretation is consistent with:

(i) the Fröhlich [28] model of macroscopic quantal coher-
ence in biological systems. In this approach a system
of coupled oscillators in a heat bath is supplied with
energy at a constant rate. When the rate exceeds a
certain mean rate then the oscillators condense into
one giant dipole whose subelements are spatially in-
terconnected each to other;

(ii) Laird [29] who indicated that the Gompertz function
(28) evaluated for the system of proliferating cells can
be extrapolated to one cell. It means that it properly
describes the growth of the macrosystems composed
of a large initial number of proliferating cells (G0 =
103–105) [30] as well as microsystems composed of
one cell (G0 = 1) [29];

(iii) Bajzer [31] and Vuk-Pavlović [32] who proved that
the Gompertzian growth is a self-similar and allomet-
ric process in which the sizes of the growing system at
different times are interrelated by a simple power low.
Hence, the Gompertz function (28) is a self-similar
function, and the selfsimilarity implies invariance of
scaling;

(iv) Mombach et al. [27] who derived the Gompertz func-
tion of growth in the framework of the cellular mean-
field theory, in which the presence of long-range
(slowly decaying) interactions is taken into account.

The points (ii) and (iii) indicate that the Gompertz
model properly describes the growth of a macrosystem
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(organism, organ, tumor, bacterial colony, crystal) as a
whole and its subsystems (microsystems) composed of the
one single cell or molecular aggregate.

The results obtained in this work indicate that the
space-like Morse coherent states seem to be a key to under-
standing of the coherent formation of the specific growth
patterns in the Gompertzian systems in particular and
the self-organization, cooperation and biological order in
general.
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